CroSel: Cross Selection of Confident Pseudo Labels for Partial-Label Learning Shiyu Tian, Hongxin Wei, Yiqun Wang, Lei Feng

Intro and Motivation

The success of deep learning heavily relies on a massive amount of **fully labeled** data. However, it is challenging to obtain a large-scale dataset with completely accurate annotations in the real world. What is PLL?

Each training example with a candidate label set that includes the true label.

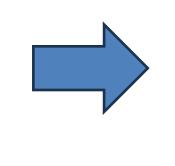
A dog image x with candidate label set

= {Toy-poodle, Dhole, Bulldog}

Challenge?

There exists the challenge of **label ambiguity** in PLL. As only one ground-truth label for each training example, and other labels in the candidate label set are actually wrong (false positive) labels.

Identify more 'true' labels

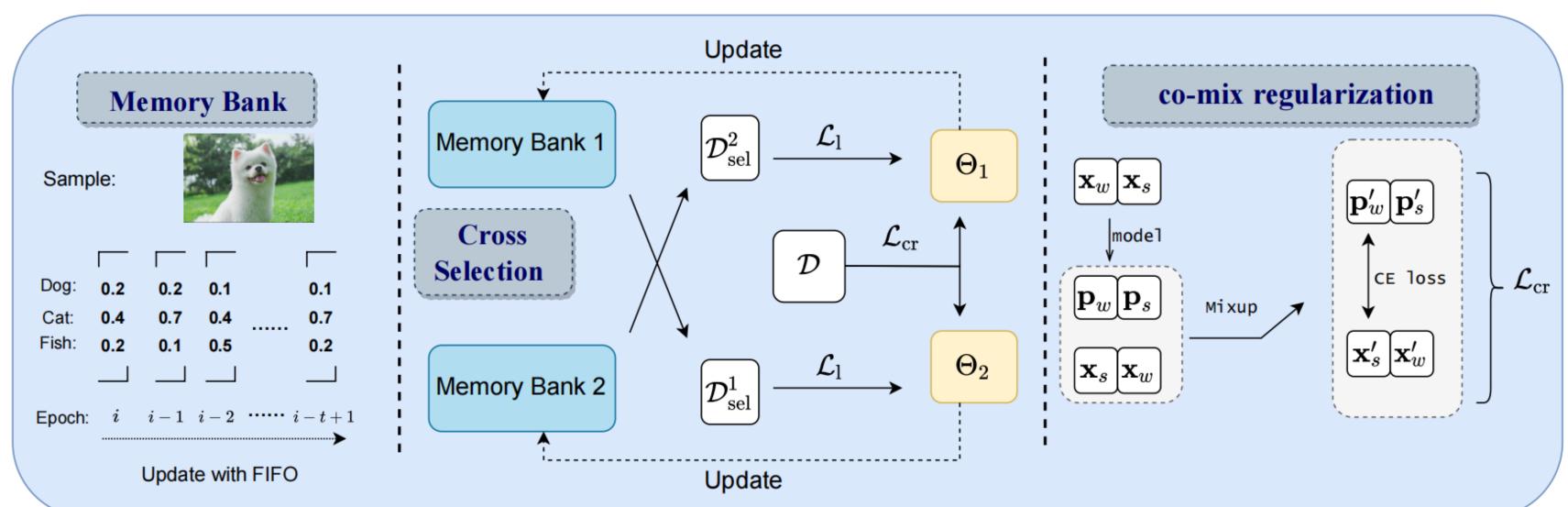


Train a **better** model

How to select the 'true' label in the candidate label set?

if a model can predict the same label with high **confidence** and **low volatility**, then there is a high probability that the label is the true label of this example.

Methodology



Cross Selection strategy

Our selection criteria consists of three parts: Partial-label setting $\beta_1 = \mathbb{I}(\arg$ Low volatility level $\beta_2 = \mathbb{I}(\arg$ High confidence level $\beta_3 = \mathbb{I}(\frac{1}{4})$ $\mathcal{L}_{l} = \frac{1}{|\mathcal{I}|}$

Training Objective for \mathcal{L}_1

Co-mix consistency regularization term based on the idea of **consistency regularization** use **sharpen** and **mixup** to further au

$$\lambda = \begin{cases} \frac{\exp(f_i(\boldsymbol{x})^{\frac{1}{T}})}{\sum_{i \in S} \exp(f_i(\boldsymbol{x})^{\frac{1}{T}})}, & i \in S, \\ 0, & i \notin S, \end{cases}$$
 $\lambda \sim \operatorname{Beta}(\alpha, \alpha), \\\lambda' = \max(\lambda, 1 - \lambda), \\x' = \lambda' \boldsymbol{x}_1 + (1 - \lambda') \boldsymbol{x}_2, \\p' = \lambda' \boldsymbol{p}_1 + (1 - \lambda') \boldsymbol{p}_2, \end{cases}$

Training Objective for \mathcal{L}_{cr}

 $\mathcal{L}_{\rm cr} = \frac{1}{2n}$

Overall Training Objective

$$\mathcal{L}_{all} = \mathcal{L}_{l} + \lambda_{d} * \mathcal{L}_{cr}$$
 $\lambda_{d} = (1 - r_{s}) * \lambda_{cr}$

This hyperparameter decreases gradually as the picking ratio rises

$$\begin{aligned} \operatorname{rgmax}(\boldsymbol{q}^{i}) \in S), \\ \operatorname{rgmax}(\boldsymbol{q}^{i}) &= \operatorname{argmax}(\boldsymbol{q}^{i+1})), \\ \sum_{i=1}^{t} \max(\boldsymbol{q}^{i}) > \gamma), \\ \frac{1}{\mathcal{D}_{\mathrm{sel}}} \sum_{\boldsymbol{x} \in \mathcal{D}_{\mathrm{sel}}} \mathcal{L}_{\mathrm{CE}}(f(\boldsymbol{x}_{\mathrm{w}}), \hat{y}) \end{aligned}$$

$$\frac{1}{n}\sum_{i=1}^{2n}\mathcal{L}_{\mathrm{CE}}(f(oldsymbol{x}_i'),oldsymbol{p}_i')$$

Experimental results

Whether CroSel can outperform prior PLL methods?

Dataset	q		Ours	Po
	0.1	97.	31±.04%	97.17
CIFAR-10	0.3	97.	50±.05%	97.08
	0.5	97.	34±.05 %	96.66
	0.1	97.	71±.05%	97.55
SVHN	0.3	97.	96±.05%	97.50
	0.5	97.86±.06%		97.31
	0.01	84.	24±.09%	83.03
CIFAR-100	0.05	83.	92±.24%	82.79
	0.10	84.	07±.16 %	82.39
	1			
Datasets	Set	ting	Index	Performa
	a -	0.1	S-ratio	$99.09 {\pm} .0$
	<i>q</i> –	0.1	S-acc	99.79±.0
CIFAR-10	a -	0.3	S-ratio	98.10±.1
	<i>q</i> –	0.5	S-acc	99.55±.0
	q =	0.5	S-ratio	$96.25 \pm .1$
			S-acc	99.44±.0
	q =	q = 0.1 S-ratio		$97.25 \pm .1$
			S-acc	99.84±.0
SVHN	a =	0.3	S-ratio	$76.42 \pm .2$
	1		S-acc	99.77±.0
	a =	0.5	S-ratio	73.21±.1
	9	0.0	S-acc	99.34±.0
	<i>a</i> =	0.01	S-ratio	96.58±.1
	<i>q</i> –	0.01	S-acc	99.71±.0
CIFAR-100)	0.05	S-ratio	95.45±.2
	<i>q</i> –	0.00	S-acc	98.29±.1
	a –	0.10	S-ratio	93.61±.1
		0.10	S-acc	97.93±.1

Does each CroSel component work effectively?

Table 4. Results of thorough ab

cr1	cr2	cr3	$\mathcal{L}_{ ext{cr}}$	Acc	S-acc	S-ratio
\checkmark				73.12%	95.15%	90.32%
\checkmark	\checkmark			72.00%	93.51%	85.09%
\checkmark	\checkmark	\checkmark		70.68%	96.22%	78.65%
\checkmark			\checkmark	77.04%	91.02%	97.27%
\checkmark	\checkmark		\checkmark	79.90%	94.66%	95.51%
\checkmark	\checkmark	\checkmark	\checkmark	84.07%	97.93%	93.61%

The selection strategy and regularization term reciprocally promote each other.

Code is available here https://github.com/jokersio-tsy/CroSel

PoP	CRDPLL	PiCO	PRODEN	LWS	CC
7±.01%	97.41±.06%	96.10±.06%	$95.66 {\pm} .08\%$	$91.20 {\pm} .07\%$	90.73±.10%
$8 \pm .01\%$	$97.38 {\pm}.04\%$	$95.74 {\pm} .10\%$	$95.21 {\pm} .07\%$	$89.20 {\pm} .09\%$	$88.04 {\pm} .06\%$
$5 \pm .03\%$	$96.76{\pm}.05\%$	$95.32{\pm}.12\%$	$94.55{\pm}.13\%$	$80.23 {\pm} .21\%$	$81.01 {\pm} .38\%$
$5 \pm .06\%$	97.63±.06%	96.58±.04%	$96.20 {\pm} .07\%$	96.42±.09%	96.99±.17%
$0 \pm .03\%$	$97.65 {\pm}.07\%$	$96.32 {\pm} .09\%$	96.11±.05%	$96.15 {\pm} .08\%$	$96.67 {\pm} .20\%$
$1 \pm .01\%$	$97.70 {\pm} .05\%$	$95.78{\pm}.05\%$	$95.97{\pm}.03\%$	$95.79{\pm}.05\%$	$95.83{\pm}.23\%$
$3 \pm .04\%$	$82.95 {\pm} .10\%$	$74.89 {\pm} .11\%$	$72.24 \pm .12\%$	$62.03 {\pm} .21\%$	66.91±.24%
$9 \pm .02\%$	$82.38 {\pm} .09\%$	$73.26 {\pm} .09\%$	$70.03 {\pm} .18\%$	$57.10 {\pm} .17\%$	64.51±.37%
9±.04%	$82.15 {\pm}.20\%$	$70.03 {\pm} .10\%$	69.82±.11%	52.60±.54%	61.50±.36%

05% 12% 06% 06%

CroSel achieves the **best results** on different settings and shows great selection accuracy and selection ratio of pseudo labels.

olation experiments

Table 5. Results for ablation studies on the scope of regularization.

Setting	Scope	Index	Performance
CIFAR-10 q = 0.5		Acc	97.34%
	All data	S-ratio	96.25%
		S-acc	99.44%
		Acc	90.32%
	Unselected data	S-ratio	93.27%
		S-acc	95.72%
		Acc	81.01%
	None	S-ratio	90.23%
		S-acc	89.72%
		Acc	84.07%
	All data	S-ratio	93.61%
CIFAR-100 q = 0.1		S-acc	97.93%
		Acc	77.61%
	Unselected data	S-ratio	90.12%
		S-acc	97.63%
		Acc	70.68%
	None	S-ratio	78.65%
		S-acc	96.22%

